## **Joint Research Centre**

the European Commission's in-house science service



Serving society Stimulating innovation Supporting legislation

The CO<sub>2</sub>MPAS tool

G. Fontaras,

V. Arcidiacono, V. Valverde, K. Anagnostopoulos, S. Tsiakmakis, B. Ciuffo, J. Pavlovic, D. Komnos

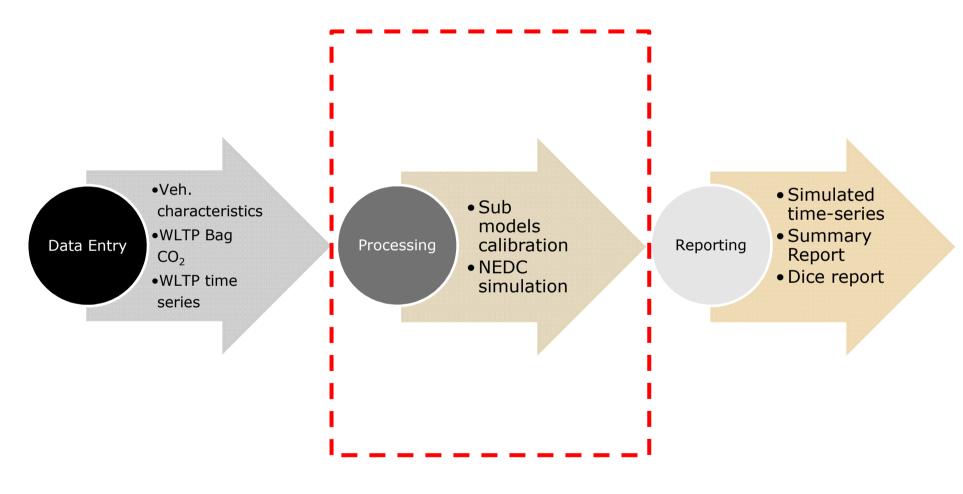
Ispra, 17/11/2016



## **Approach - Phasing-in**

 During the WLTP phasing-in, WLTP measurements will be correlated into NEDC values using CO<sub>2</sub>MPAS (CO<sub>2</sub> Model for PAssenger and commercial vehicles Simulation), developed by JRC.

WLTP-based vehicle Type-Approval


**CO<sub>2</sub>MPAS** meta-model

NEDCequivalent CO<sub>2</sub> emissions NEDC-based OEM performance





# CO<sub>2</sub>MPAS data flow overview







#### **Key features**

Comprises of 2 main calculation modules

#### Power - RPM module

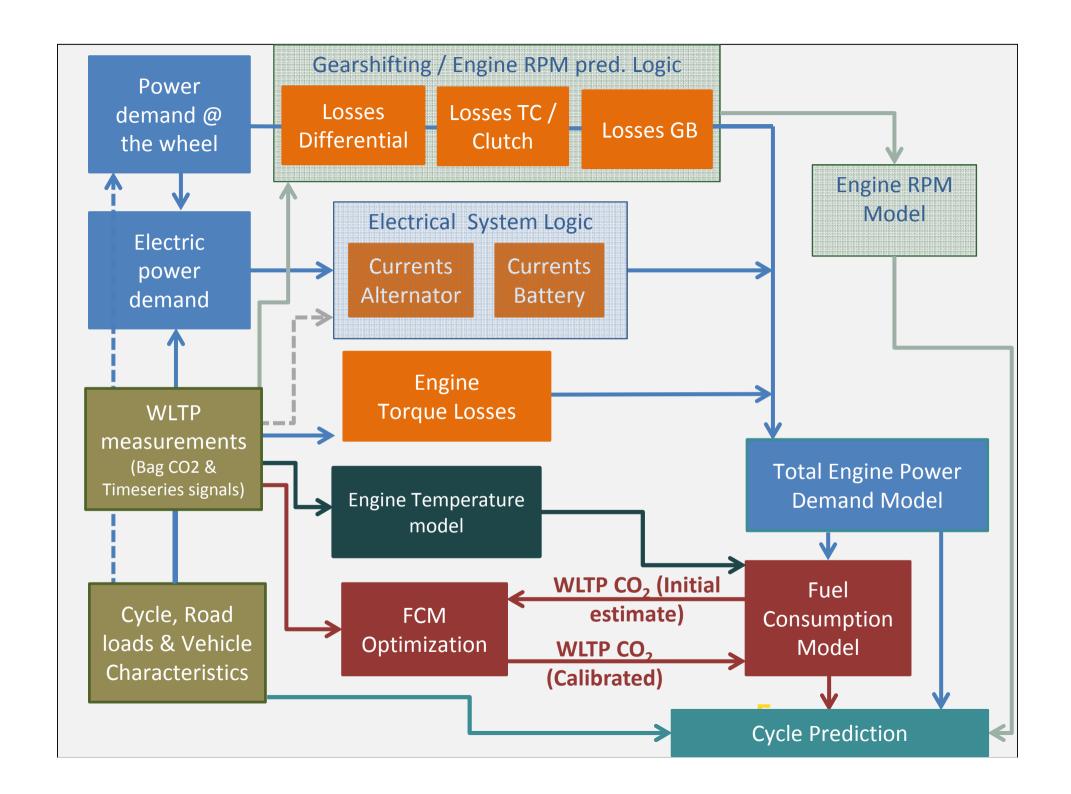
- Simple longitudinal dynamics (WLTP-GTR)
- Engine power and RPM calc'd @ 1hz
- Inclusion of Mech or Elec. loads where needed
- Generic start-stop logic
- A/T and CVT RPM prediction model
- Alternator logic calibrated over WLTP

#### FC module

- Calculation of FC
   Indicative instantaneous approach
- Based on an extended Willans model
- Semi-physical empirical cold start model
- Calibration Optimization based on WLTP results
- Specific engine technologies included

#### +Parallel work for HEV control module and optimization




Accurate calculation of average / instantaneous power demand



Very good accuracy when compared with results obtained from the Cruise simulations by LAT and **Real test data**from 40 vehicles







# CO<sub>2</sub>MPAS sub-models

- CO<sub>2</sub>MPAS includes the following sub-models:
  - Automatic Transmission model (gear shifting)
  - Clutch / Torque converter model score
  - Engine cold start speed model
  - Engine speed model
  - Start stop model
  - Alternator model
  - Engine coolant temperature model
  - Engine fuel consumption (CO<sub>2</sub>) model





## CO<sub>2</sub>MPAS self assessment of internal models

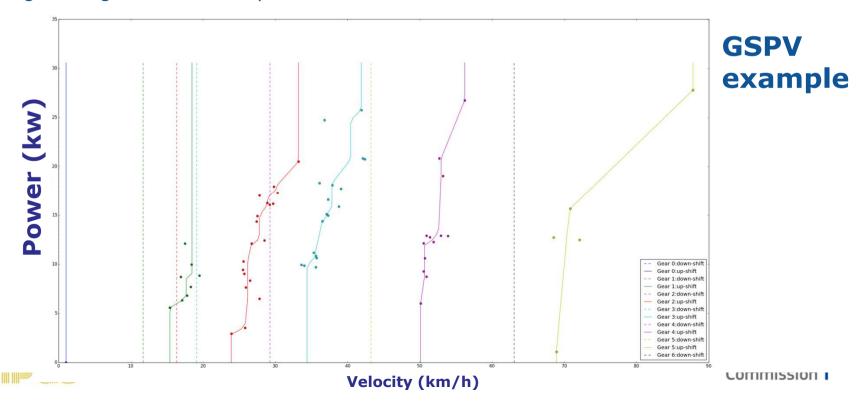
#### CO2MPAS DICE REPORT

| TA Certificate Number |                     |
|-----------------------|---------------------|
| CO2MPAS version       | 1.4.1rc0            |
| Date/Time             | 2016/11/16-18:24:31 |
| Type approval mode    | False               |

|                                        | Vehicle H             | Vehicle L             | u  |
|----------------------------------------|-----------------------|-----------------------|----|
| Fuel Type                              | diesel                | diesel                | -  |
| Engine Capacity                        | 1596.00               | 1596.00               | cc |
| Gearbox type                           | manual                | manual                | -  |
| Turbo engine                           | TRUE                  | TRUE                  | -  |
| sub_models_uuid                        | b'\x80\x03}q\x00(X\x1 | b'\x80\x03}q\x00(X\x1 | -  |
| alternator_model score                 | 11.48                 | 10.51                 | Α  |
| at_model score                         |                       |                       | -  |
| clutch_torque_converter_model score    | 43.74                 | 43.74                 | RF |
| co2_params score                       | 0.01                  | 0.02                  | CC |
| engine_cold_start_speed_model score    | 46.40                 | 46.33                 | RF |
| engine_coolant_temperature_model score | 1.08                  | 1.49                  | °c |
| engine_speed_model score               | 15.38                 | 15.38                 | RF |
| start_stop_model score                 | -0.99                 | -0.99                 | -  |
| CO2MPAS deviation                      |                       |                       | %  |

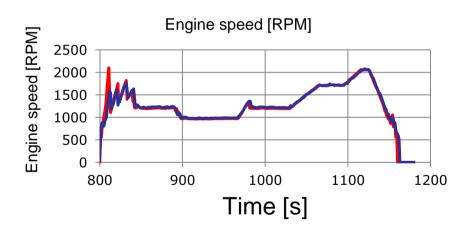
#### CO2MPAS DICE REPORT

| TA Certificate Number |                     |
|-----------------------|---------------------|
| CO2MPAS version       | 1.4.1rc0            |
| Date/Time             | 2016/11/16-18:36:07 |
| Type approval mode    | False               |

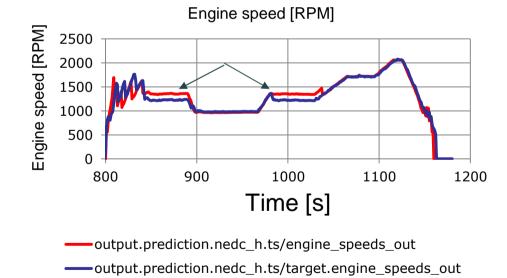

|                                        | Vehicle H             | Vehicle L             |
|----------------------------------------|-----------------------|-----------------------|
| - 1-                                   |                       |                       |
| Fuel Type                              | gasoline              | gasoline              |
| Engine Capacity                        | 3498.00               | 3498.00               |
| Gearbox type                           | automatic             | automatic             |
| Turbo engine                           | FALSE                 | FALSE                 |
| sub_models_uuid                        | b'\x80\x03}q\x00(X\x1 | b'\x80\x03}q\x00(X\x1 |
| alternator_model score                 | 10.05                 |                       |
| at_model score                         | -0.79                 |                       |
| clutch_torque_converter_model score    | 68.68                 |                       |
| co2_params score                       | 0.04                  |                       |
| engine_cold_start_speed_model score    | 89.14                 |                       |
| engine_coolant_temperature_model score | 1.28                  |                       |
| engine_speed_model score               | 20.49                 | 42.10                 |
| start_stop_model score                 | -1.00                 |                       |
| CO2MPAS deviation                      |                       |                       |

European

- Mean absolute error (quantities with units)
- Calibration coefficient for unit-less quantities


#### **Automatic Transmission model (gear-shifting 1/2)**

- There are 2 **official** options enabled in the A/T model:
  - Corrected Mean Velocity (CMV) creates a "map" of gear upshifts and down-speeds as a function of vehicle speed.
  - GearShift Power-Velocity (GSPV) creates a map of gear upshifts as a function of vehicle speed & the power at the gearbox
- CO<sub>2</sub>MPAS automatically selects the option that better reproduces gear shifting over WLTP
- Two sets of gear-shift maps are calculated, hot and cold conditions
- In engineering mode the DT option can be also enabled

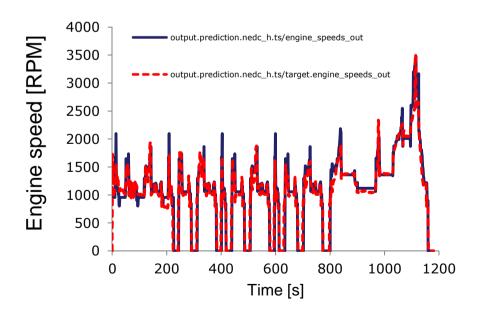


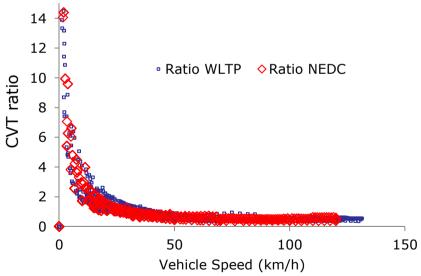

#### **Automatic Transmission model (gear-shifting 2/2)**

• Final step: Matrix Velocity Limits (**MVL**) correction model corrects gear-shifting over quasi-steady state conditions ()



---output.prediction.nedc\_h.ts/engine\_speeds\_out
---output.prediction.nedc\_h.ts/target.engine\_speeds\_out






#### **Automatic Transmission model (gear-shifting 2/2)**

 For CVTs a gradient boost regressor is used to predict Engine RPM as a function of vehicle speed, acceleration and power at the gearbox







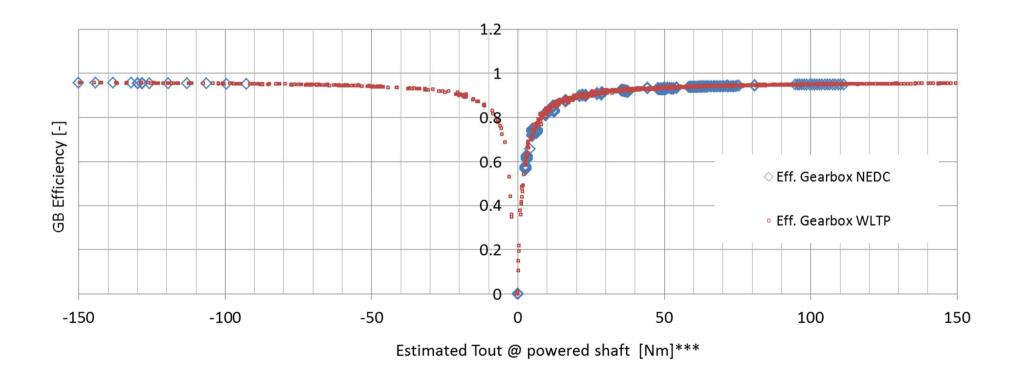


## **Gearbox Losses (1/2)**

A generic torque loss model is used in CO<sub>2</sub>MPAS

```
■ T_{out} [Nm] = GB10 · RPM<sub>in</sub> + GB01 · T_{in} + GB00
```

Where


```
• GB00 = -0.0034 * T_{max} + \frac{-0.3 if warm conditions (80°C)}{-0.7 if cold conditions (40°C)}
```

• GB10 = -0.0034/2000 \* 
$$T_{max}$$
 +  $\frac{-0.1/2000 if warm conditions (80°C)}{-0.25/2000 if cold conditions (40°C)}$ 

- GB01 =  $\frac{0.975 \ if \ warm \ conditions \ (80^{\circ}C)}{0.965 \ if \ cold \ conditions \ (40^{\circ}C)}$
- All quantities refer to the input shaft (engine side) of the gearbox
- Linear interpolation between cold and hot T<sub>out</sub> according to GB temperature calculated by CO<sub>2</sub>MPAS

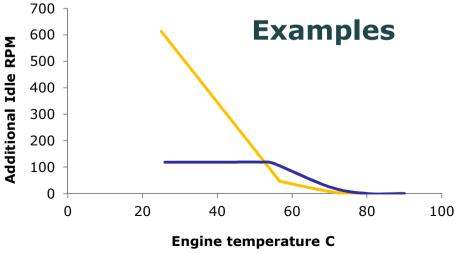


# **Gearbox Losses (2/2)**





# Clutch / Torque converter model


- CO<sub>2</sub>MPAS by default calibrates a clutch model (generic or DTC) unless a TC is declared as present on the vehicle:
  - In both cases an "RPM-slip" model as a function of acceleration is fitted based on experimental data
- Efficiency model (predefined non calibrated):
  - Clutch: linear TC efficiency as a function of RPM ratio
  - TC: a non-linear efficiency as a function of RPM ratio
- For TCs a lock up velocity (48km/h) is used





# **Engine cold start speed model**

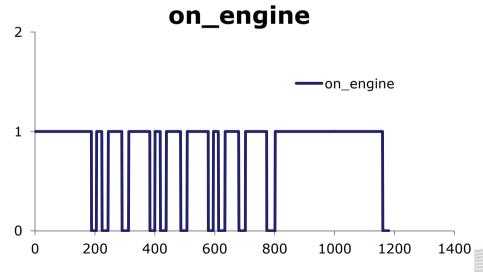
- The ECSSM increases idling RPMs during the cold start phase
- An optimizer is used to calculate the unit less  $\Delta RPM_{idle}$  [%] function during cold start
- ΔRPM is a linear function o f engine temperature capped at a certain value which is also estimated by the optimizer







# **Engine speed model**


- The ESM calculates the exact RPM/Velocity ratios over the specific test
- Gear ratios (or default RPM/V ratios) and information on tyre dimensions provided by the user are used as starting values
- An optimizer calculates the optimal dynamic radius of the tire based on the dyno velocity and engine RPM data measured over the WLTP



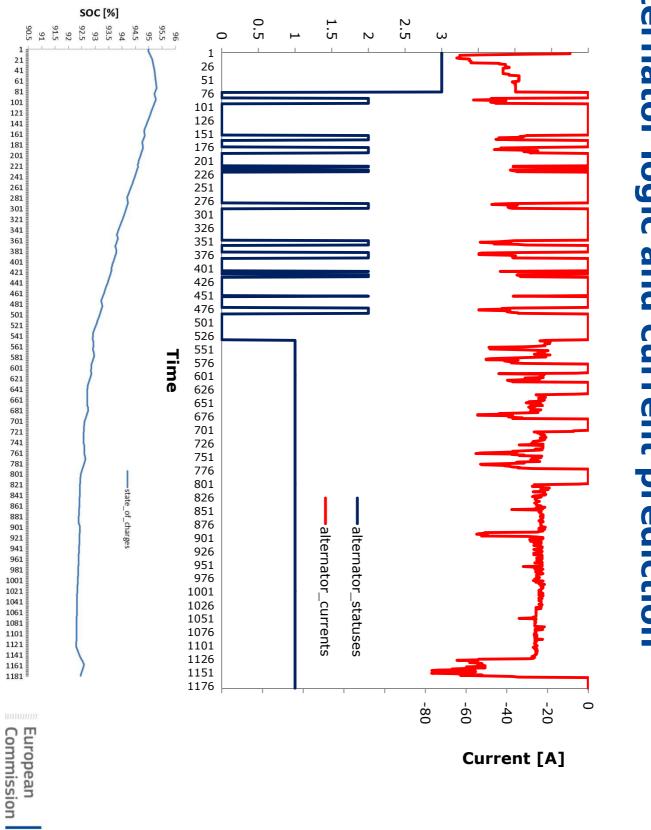


# **Start stop model**

- The SS model defines where the engine should be switched off for SS equipped vehicles
- CO<sub>2</sub> MPAS uses a classifier in order to associate engine switch off events to vehicle deceleration and velocity.
- SS functionality is initiated based on the user provided input on engine SS initiation time

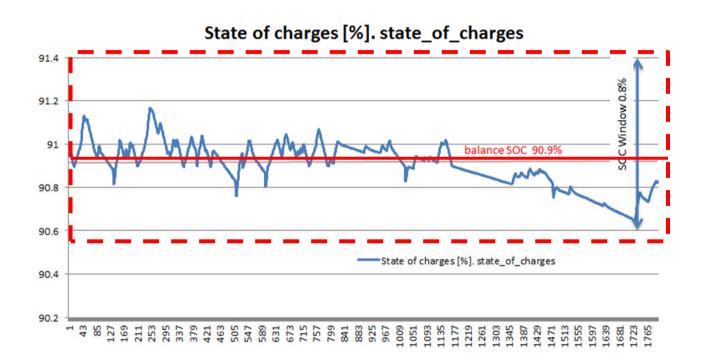





#### **Alternator model**

- Comprises of 2 parts:
  - Logic part (when the alternator operates and how)
  - Electric part (what current is supplied by the alternator)
- Logic part identifies different phases (idling, regenerative braking, battery charging, battery depletion) and under what conditions those occur → result: alternator status
- **Electric part** identifies the current per each phase based on other parameters (eg RPM, Battery SOC, deceleration)
- A gradient boost regressor is used for predicting the currents based on alt. status, acceleration, power at g/box, SOC at t-1, and initialization time






# Alternator logic and current prediction



Status [-]

# **Alternator logic and current prediction - windows**





# Engine coolant temperature model

- CO<sub>2</sub>MPAS uses a regressor to predict engine temperature
   (T) evolution
- $T_i$  is function of  $T_{i-1}$ , RPM, acceleration and the power at the gearbox
- The regressor is calibrated based on WLTP recorded time series using Gradient Boost algorithm (ransac algorithm used for inlier and outlier detection)





# Engine fuel consumption (CO<sub>2</sub>) model

- Extended Willans Model approach:
- Fitting of a specific non-linear Willans model

$$BMEP = (a+b \times cm + c \times c_m^2) \times FuMEP + (a2 \times FuMEP^2) + l_0 + l_2 \times cm^2$$

- Where:
  - BMEP: brake mean effective pressure
  - cm: mean piston speed
  - FuMEP: fuel mean effective pressure
  - a, b, c, a2, I0, I2 are the parameters that are being fitted





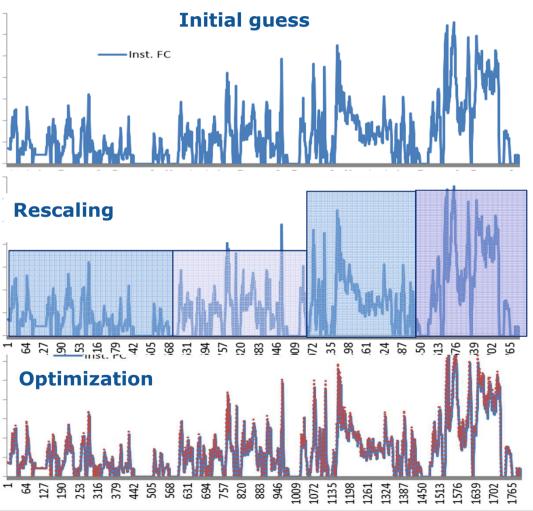
# Engine fuel consumption (CO<sub>2</sub>) model

#### Fuel Consumption (Fc) Calculation Function

$$\int FMEP(t) \, dt = \int \frac{-(a+b*C_m(t)+c*C_m(t)^2) + \sqrt{(a+b*C_m(t)+c*C_m(t)^2)^2 - 4*a_2*\left(\left(\frac{T(t)}{T_{target}}\right)^{-k}} * (l+l_2*C_m(t)^2) - BMEP(t)\right)}{2*a_2} dt$$
, where:

- $C_m(t)[m/s] = 2 * \frac{Engine\ Speed\ [rpm]}{60} * Engine\ Stroke\ [m]$
- $BMEP(t)[Pa] = {2*Engine\ Power\ [W]}/{(Engine\ Capacity\ [m^3]*^{Engine\ Speed\ [rpm]}/_{60})}$
- Fuel Consumption(t)[g/s] =  ${}^{FMEP(t)[Pa]*Engine\ Capacity}[m^3]*{}^{Engine\ Speed\ [rpm]/}_{60}/_{2*Fuel\ Lower\ Heating\ Value\ [J/g]}$

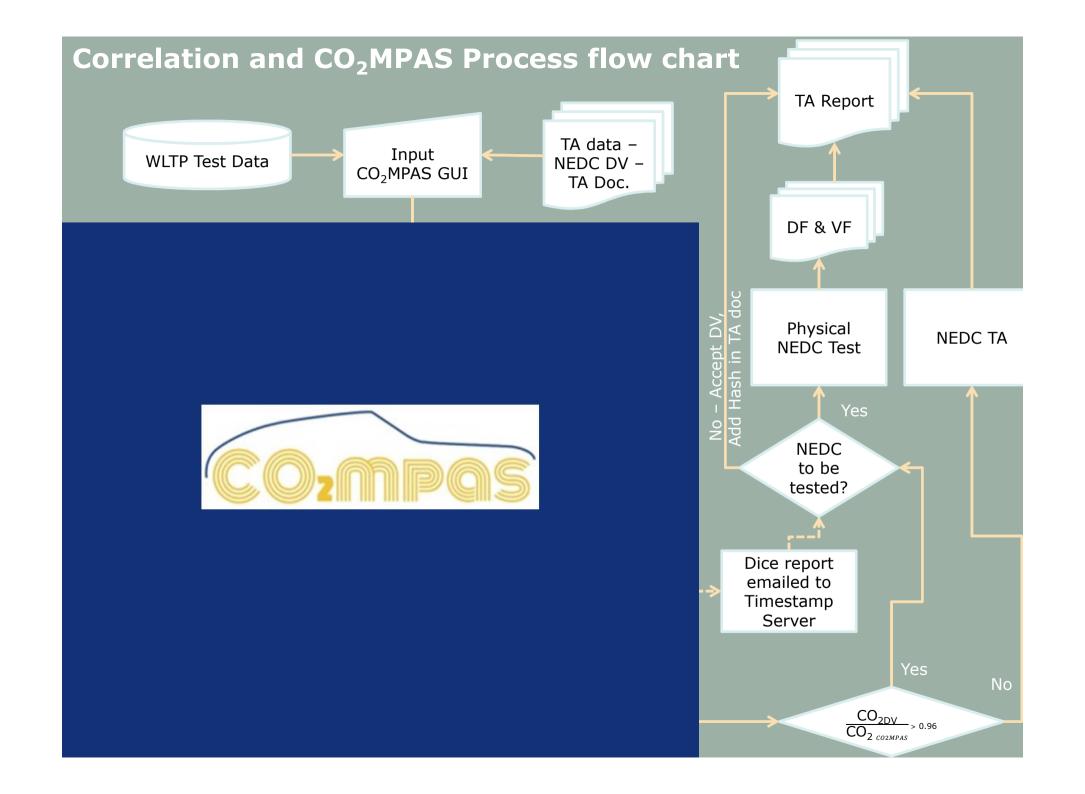
The following are considered as knowns from the measurement / other COMPAS modules (in order to understand issues and improve the stability of the FC module):


- Engine Speed, Temperature, Engine Power
- The constant parameters are calculated by optimization of the above equation against WLTP CO<sub>2</sub> measured data

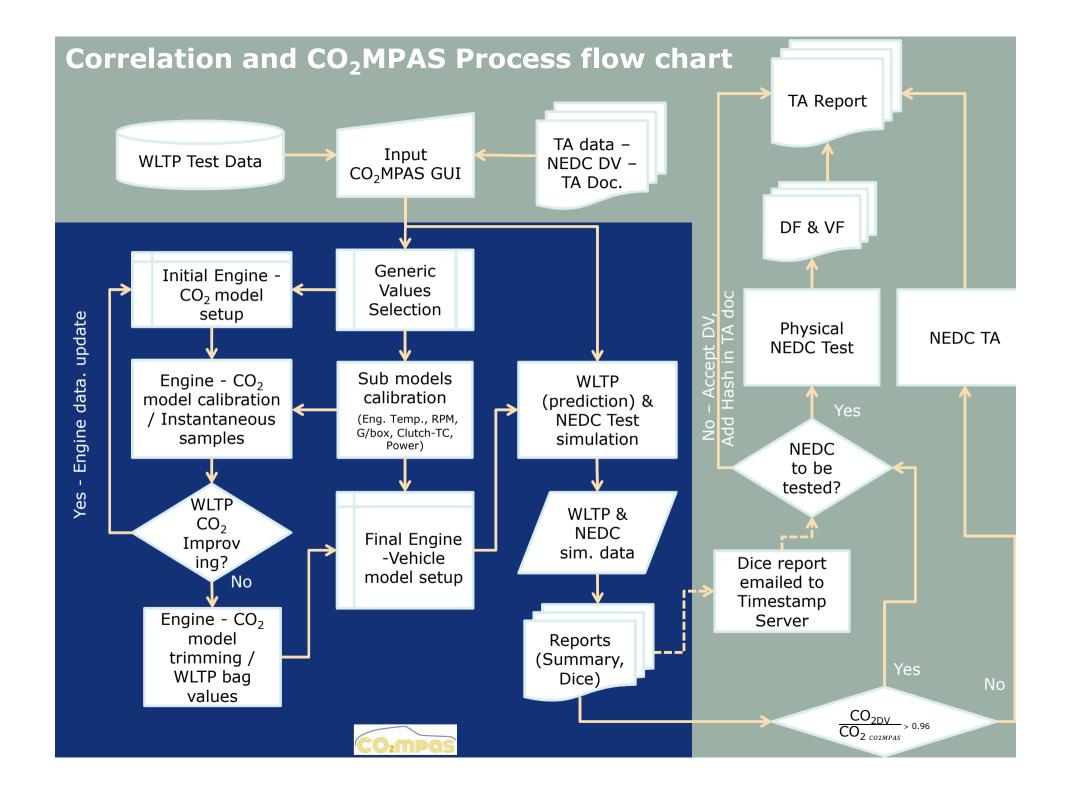
# Engine fuel consumption (CO<sub>2</sub>) model

- Extended Willans Model is calibrated using WLTP CO<sub>2</sub> results
  - An initial estimate is made based on generic values (categorized per engine and aspiration type)
  - The model perturbates until the initial and final estimate of the CO<sub>2</sub> time series converge
  - A final optimization is done in order to reduce the error in the WLTP bag value prediction.
- Specific technologies are currently considered using the Extended Willans approach
  - For Petrol engines: Variable valve actuation, Lean combustion, Aspiration type, Cylinder deactivation (limited validation), External EGR (limited validation)
  - For Diesel engines: External EGR, Cylinder deactivation (limited validation), Selective catalytic reduction (limited validation)




#### **Optimization path**






# **Summary**





#### Correlation and CO<sub>2</sub>MPAS Process flow chart Input CO<sub>2</sub>MPAS GUI Generic Initial Engine -Values CO<sub>2</sub> model Selection setup data. update Sub models Engine - CO<sub>2</sub> WLTP calibration model calibration (prediction) & / Instantaneous (Eng. Temp., RPM, **NEDC Test** Engine G/box, Clutch-TC, samples simulation Power) Yes WLTP WLTP & $CO_2$ NEDC Final Engine **Improv** sim. data -Vehicle ing? model setup Engine - CO<sub>2</sub> model Reports trimming / (Summary, WLTP bag Dice) values





## **Stay in touch**



JRC Science Hub: www.ec.europa.eu/jrc



Twitter: @EU\_ScienceHub

in LinkedIn: european-commission-joint-research-centre

YouTube: JRC Audiovisuals

Vimeo: Science@EC

