Joint Research Centre

the European Commission's in-house science service

Serving society Stimulating innovation Supporting legislation

Overview of the Correlation and CO2MPAS Process

J. Pavlovic, G. Fontaras,

V. Arcidiacono, V. Valverde, K. Anagnostopoulos, S.

Tsiakmakis, B. Ciuffo, J., D. Komnos, A. Tansini

Ispra, 15/05/2017

CO2MPAS Report

- CO2MPAS detailed report contains all input/output data, charts, summarized results.
- Two important tabs for TA process in that report are:
- OUTPUT REPORT and
- 2. DICE REPORT

CO2MPAS version	1.5.0rc0
Date/Time	2017/04/06-12:20:06
Type approval mode	False

NEDC Average Specific CO2 Emissions*	Vehicle H	Vehicle L	units
NEDC CO2 de dared value	124.40		g/km
NEDC CO2MPAS simulated	122.06		g/km
CO2MPAS deviation	-1.88		%

^{*}Ki factor - corrected

NEDC CO2MPAS CO2 Emissions	Vehicle H	Vehicle L	
CO2MPAS simulated NEDC	122.06		g/km
CO2MPAS simulated UDC	129.52		g/km
CO2MPAS simulated EUDC	117.74		g/km

	Vehicle H	Vehicle L	units
Fuel Type	diesel		-
Engine Capacity	1596.00		сс
Gearbox type	manual		-
Turbo engine	TRUE		
alternator_model score	11.90		A
at_model score			-
clutch_torque_converter_model score	24.91		RPM
co2_params score	0.03		CO2g/s
engine_cold_start_speed_model score	37.81		RPM
engine_coolant_temperature_model score	1.24		°C
engine_speed_model score	6.41		RPM
start_stop_model score	-0.99		-
CO2MPAS deviation	-1.88		%

NEDC Inputs	Vehicle H	Vehicle L	
FO	89.10		N
F1	0.8790		N/km,
F2	0.0387		N/(km
Inertia	1590.0		kg
WLTP Inputs	Vehicle H	Vehicle L	
FO	101.90		N
F1	0.8920		N/km/
F2	0.0393		N/(km
Test Mass	1698.8		kg
CO2 emission phase Low	141.34	//	g/km
CO2 emission phase Medium	128.25		g/km
CO2 emission phase High	121.60	***	g/km
CO2 emission phase Extra-High	153.37	1	g/km

Output Report

European Commission

Output Report

CO2MPAS SUMMARY OUTPUT REPORT

If CO2MPAS deviation
 ≤4% OEM <u>declared NEDC</u>
 CO2 value is <u>accepted</u>;

TA Certificate Number	
CO2MPAS version	1.4.1rc0
Date/Time	2016/11/22-14:19:09
Type approval mode	True

2. If CO2MPAS deviation >4% OEM has option to accept new value or to request physical test.

NEDC Average Specific CO2 Emissions*	Vehicle H	Vehicle L	un
NEDC CO2 declared value	145.31	143.90	g/
NEDC CO2MPAS simulated	145.39	142.31	g/
CO2MPAS deviation	0.05	-1.10	%

^{*}Ki factor - corrected

NEDC CO2MPAS CO2 Emissions	Vehicle H	Vehicle L	
CO2MPAS simulated NEDC	145.39	142.31	g/kr
CO2MPAS simulated UDC	161.34	157.63	g/kr
CO2MPAS simulated EUDC	136.14	133.43	g/kr

Output Report

From OUTPUT REPORT phase-specific CO2 values should be calculated

CO2MPAS SUMMARY OUTPUT REPORT

TA Certificate Number	
CO2MPAS version	1.4.1rc0
Date/Time	2016/11/22-14:19:09
Type approval mode	True

CO_{2, AF} is adjustment factor and ratio between final combined NEDC CO₂ (declared, CO2MPAS) and CO2MPAS simulated value.

NEDC Average Specific CO2 Emissions*	Vehicle H	Vehicle L	uni
NEDC CO2 declared value	145.31	143.90	g/k
NEDC CO2MPAS simulated	145.39	142.31	g/k
CO2MPAS deviation	0.05	-1.10	%

^{*}Ki factor - corrected

NEDC CO2MPAS CO2 Emissions	Vehicle H	Vehicle L	
CO2MPAS simulated NEDC	145.39	142.31	g/
CO2MPAS simulated UDC	161.34	157.63	g/
CO2MPAS simulated EUDC	136.14	133.43	g/

Dice Report

For each WLTP
interpolation family this file
should be sent to a
functional mailbox – as a
result random number will

be received (from 0 to 99).

CO2MPAS DICE REPORT

TA Certificate Number	
CO2MPAS version	1.4.1rc0
Date/Time	2016/11/22-14:19:09
Type approval mode	True

	Vehicle H	Vehicle L	units
Fuel Type	diesel	diesel	-
Engine Capacity	2041.00	2041.00	сс
Gearbox type	manual	manual]-
Turbo engine	TRUE	TRUE	-
sub_models_uuid	b'\x80\x03}q\x00(X\x0	b'\x80\x03}q\x00(X\x0]-
alternator_model score	4.44	6.01	Α
at_model score			-
clutch_torque_converter_model score	0.35	0.35	RPM
co2_params score	0.00	0.00	CO2g/s
engine_cold_start_speed_model score	0.00	0.05	RPM
engine_coolant_temperature_model score	0.87	0.81	°C
engine_speed_model score	0.00	0.00	RPM
start_stop_model score	-1.00	-1.00	-
CO2MPAS deviation	0.05	-1.10	%

Random Number

SCENARIO A

CO2MPAS DEVIATION ≤4%

DV ACCEPTED

SCENARIO B

CO2MPAS
DEVIATION >4%

CO2MPAS ACCEPTED

DICE REPORT SENT

RN 0-89

END TA PROCESS RN 90-94

1 NEDC-L TEST RN 95-99

1 NEDC-H TEST

Random Number

Random Testing

Only in cases where CO2MPAS was used to confirm declared value there is 10% of chance for performing one random physical test.

From this test <u>Verification Factor</u> and <u>Relative Deviation</u> should be recorded in TA certificate and CoC.

<u>Verification Factor VF</u> is used to check accuracy of the input data (fuel saving gear, start-stop activation time, and BERS). In case of non conformity it shall be set to 1.

Relative Deviation De is deviation between measured and OEM declared value

$$De = \frac{RTr - DV}{DV}$$

VERIFICATION FACTOR

In the following slides,

- Start-Stop Activation Time
- Fuel saving for automatic vehicles
- Brake Energy Recuperation System

will be clarified with specific methods in real examples.

CO₂MPAS team will support you and try to find the solution if you face any doubts about the model and its usage.

START STOP ACTIVATION TIME

Is the Start-Stop activation time declared correctly?

➤ Identify from random NEDC test when the first Start-Stop occurred from the measured engine speed signal (RPM=0 for the first time). T

Then, considering the start stop activation time the above must

apply:

 $t_{declared} \ge t_{measured}$

FUEL SAVING FOR AT

- ➤ Setting it to 1 allows CO₂MPAS to use a higher gear at constant speed driving than when in transient conditions, resulting in a reduction of fuel consumption;
- ➤ How to check: Plotting the measured and the simulated signals you may see a which case follows better the original measured RPM signal.

WRONG INPUT!

CORRECT INPUT!

BERS

Setting it to 1 means that the vehicle is equipped with any kind of break energy recuperation technology or regenerative breaking;

- ➤ You should check in parallel the <u>acceleration signal</u> and the <u>battery current</u>. When the vehicle brakes, the acceleration is negative.
- At the periods of breaking (<u>Acceleration < 0</u>), you will observe positive peaks in the battery signal.

BERS

Technologies not covered with CO2MPAS

- Physical NEDC measurements shall be used instead of CO2MPAS in case of <u>HEVs</u> (both OVC-HEVs and NOVC-HEVs)
- However, other provisions set out in Annex I regarding the physical testing shall be respected, in particular:
- Calculation of NEDC RLs and inertia;
- 2. Number of tests and interpretation of results; and
- Calculation of CO2 and FC attributed to individual vehicles in the NEDC interpolation family

Stay in touch

JRC Science Hub: www.ec.europa.eu/jrc

Vimeo: Science@EC

FUEL SAVING FOR AT

➤ Second option to check: In case that it is still difficult to visually verify if in a specific automatic vehicle this technology applies, you shall calculate the mean error between the measured and the simulated engine_speed vector for the steady state parts of UDC and EUDC:

$$error = \sum_{i=0}^{n} (RPM_{measured}[i] - RPM_{simulated}[i])$$

If the mean error is higher than 0, the fuel saving gear is likely not to be present in the vehicle

