

STEPS BEFORE RUNNING CO2MPAS

2nd workshop with OEMs Ispra, December 12-13, 2016

Joint Research Centre

STEPS THAT WILL BE DISCUSSED

WLTP TESTS

- Number of tests
- TESTS Quality of tests

NEDC

- Family: Yes or No?
- RL Calculation

CO2MPAS

WLTP - NUMBER OF TESTS

WLTP VEHICLE H

WLTP VEHICLE L

1 TEST

THIS IS YOUR INPUT

1 TEST

2 TESTS

TEST WITH HIGHER CO2 (COMBINED) IS INPUT

2 TESTS

3 TESTS

TEST WITH MEDIAN CO2 (COMBINED) IS INPUT

3 TESTS

Joint Research Centre

WLTP - QUALITY OF DATA

WLTP VEHICLE H

WLTP VEHICLE L

1 TEST

2 TESTS

NEVER MIX BAG RESULTS
OF ONE WLTP TEST WITH
TIME-SERIES SIGNALS
FROM ANOTHER WLTP
TEST

ST

2 TESTS

3 TESTS

Joint Research Centre

WLTP - QUALITY OF TESTS

- Make sure that WLTP tests are carried out <u>fully compliant</u> with WLTP requirements, for example:
 - Preconditioning is performed day before and <u>battery is not charged</u> overnight;
 - WLTP <u>Road Loads</u> are transferred to dyno with accuracy prescribed with new regulation (±10N)
 - Vehicle is soaked minimum 6 hours at 23°C±3°C and engine oil and coolant temperature shall be 23°C±2°C at the start of the test;
 - Rotational mass is correctly applied to the road load and for inertia setting

WLTP - DYNO RL SETTING ACCURACY

WLTP	TARGET	MEASURED
F0 (N)	139.88	129.88
F1 (N/km/h)	0.892	0.892
F2 (N/(km/h)^2)	0.04298	0.04298

WLTP allows ±10N
tolerance in setting dyno RLs
= APPLIED RLs can be
lower by 10N compared to
TARGET

NEDC - DYNO RL SETTING ACCURACY

NEDC	TARGET	MEASURED
F0 (N)	133.88	119.54
F1 (N/km/h)	0.879	1.049
F2 (N/(km/h)^2)	0.04298	0.03966

NEDC allows ±5%* time
tolerance in setting dyno RLs
=> APPLIED time can be
higher by 5% compared to
TARGET time
=> APPLIED forces lower
than TARGET forces

^{*±10%} for the lowest reference speed (20km/h)

DYNO RL SETTING ACCURACY – FINAL EFFECT

NEDC	TARGET	MEASURED	
FO (N)	133.88	119.54	
F1 (N/km/h)	0.879	1.049	
F2 (N/(km/h)^2)	0.04298	0.03966	
WLTP	TARGET	MEASURED	
FO (N)	139.88	129.88	
F1 (N/km/h)	0.892	0.892	
F2 (N/(km/h)^2)	0.04298	0.04298	
	TARGET	MEASURED	DECLARED
CO2MPAS RESULT	122.12	119.42	117
CO2MPAS DEVIATION (%)	4.38	2.07	

The effect can be even higher and we saw also some tests where it can be more than 5%

NEDC FAMILY – YES OR NO?

1. WLTP ONLY VEHICLE H

 All vehicles will have one NEDC H value

2. WLTP VEHICLE H AND L

 Situation with one body shape and one option for tire

3. WLTP VEHICLE H AND L

 NEDC will have interpolation family

NEDC Calculation of RLs and Inertia

INPUTS		WLTP-H	
		Test Mass -H (kg)	1400
MRO-L (kg)	1000	F0 -H (N)	130
MRO-H (kg)	1100	F1 -H (N/km/h)	0.400
		F2 -H (N/(km/h)2)	0.03400
WLTP-L		$F2^{a^*}$ -H (N/(km/h)2)	0.03300
Test Mass -L (kg)	1200	TIRE PRESSURE	
F0* -L (N)	110	Pmin-H	2
F1* -L (N/km/h)	0.400	Pmax-H	3
F2* -L (N/(km/h)2)	0.03000	Pmin-L	2
$F2^{a^*}$ -L (N/(km/h)2)	0.03200	Pmax-L	3

$$RM_{n,L} = (MRO_L - 75 + 100)[kg]$$

 $RM_{n,H} = (MRO_H - 75 + 100)[kg]$

 $RM_{N,L} = 1000 - 75 + 100 = 1025 \text{ kg}$ and from Regulation 83 it corresponds to inertia of 1020 kg

NEDC Calculation of F₀

CO2MPAS

$$F_{0n,L} = F_{0w,L} \cdot \left(\frac{RM_{n,L}}{TM_{w,L}}\right) \cdot \left(\frac{P_{avg,L}}{P_{min,L}}\right)^{-0.4} \cdot \frac{1.015}{1.03} - \left(2 \cdot \frac{0.1 \cdot RM_{n,L} \cdot 9.81}{1000}\right) - 6 N$$

PHYSICAL TESTS

$$F_{0n,L} = F_{0w,L} \cdot \left(\frac{RM_{n,L}}{TM_{w,L}}\right) \cdot \left(\frac{P_{avg,L}}{P_{min,L}}\right)^{-0.4} \cdot \frac{1}{1.03} - \left(2 \cdot \frac{0.1 \cdot RM_{n,L} \cdot 9.81}{1000}\right)$$

Inertia

Tire pressure

Rotational mass

Tire tread

Precond

NEDC Calculation of F₁ and F₂

CO2MPAS

$$F_{1n,L} = F_{1w,L} \cdot \frac{1.015}{1.03}$$

$$F_{2n,L} = F_{2w,L} \cdot \frac{1.015}{1.03}$$

PHYSICAL TESTS

$$F_{1n,L} = F_{1w,L} \cdot \frac{1}{1.03}$$

$$F_{2n,L} = F_{2w,L} \cdot \frac{1}{1.03}$$

When WLTP RLs are measured with coast down or wind tunnel methods these formulas for NEDC RL calculations apply.

NEDC Calculation of default RLs

CO2MPAS

When for WLTP RLs are used default values (or RLMF) the following procedure for NEDC shall apply.

NEDC Calculation of default RLs

PHYSICAL TESTS

Tabulated NEDC dyno values

When for WLTP RLs are used default values (or RLMF) the following procedure for NEDC shall apply.

NEDC Physical Tests

- Make sure that NEDC tests are carried out <u>fully compliant</u> with correlation regulation, and especially:
 - That NEDC RLs are calculated as explained;
 - Set temperature for the tests is at 25°C;
 - Battery is fully charged before the tests

Questions?